
Subject-oriented Development of Federated Systems

– A Methodological Approach

Albert Fleischmann

Metasonic AG

Pfaffenhofen, Germany

albert.fleischmann@metasonic.de

Werner Schmidt

Technische Hochschule Ingolstadt

Ingolstadt, Germany

werner.schmidt@thi.de

Christian Stary

Johannes Kepler University

Linz, Austria

christian.stary@jku.at

Abstract—This paper describes an approach for developing

federated IT systems. Those are necessary if independent

enterprises want to combine their services to reach common

objectives without giving up their independence. According to

Conway’s law, organizations produce system designs which fit

their organizational structures which might be insufficient for

networks. We propose a software development methodology

which fits to federated organizations. The proposal is based on

Subject-oriented Business Process Management (S-BPM). In S-

BPM systems are specified as a set of communicating subjects

allowing for both, independent and federated operation. We detail

the respective development activities based on subject-oriented

modeling.

Keywords—Software Project Management, Subject-oriented

BPM, Cross-Company Software Development Projects, Federated

Systems, Virtual Enterprises.

I. INTRODUCTION

In our global economy enterprises cooperate around the
globe in order to create services or manufacture products for
customers which are also distributed all over the world. The
challenge of the cooperating partners as a federation of
independent systems (virtual enterprise, VE) is to establish
smooth cross-enterprise communication to reach the common
objectives [1]. Information and communication technologies
(ICT) are essential to create a federation of independent software
systems suitable to execute business processes across the
involved companies. Figure 1 shows an example of an order-to-
cash scenario where federated applications support a cross-
company business process. A dog food store sells its products
via internet. It commissions a transportation service provider to
deliver the ordered products to the customer, who confirms the
reception of the goods. The store deducts the money from the
customer’s bank account. The process steps are facilitated by
several independent software applications and message
exchanges (order, order confirmation, delivery notification etc.)
enabled by respective communication systems.

Figure 1: Order-to-cash scenario in a federation of enterprises and applications

(simplified)

Developing such a mutually adjusted solution by a federation
of independent enterprises requires an approach different from
traditional software development projects taking a process
perspective (cf. [2]). Therefore our focus is on how to implement
loosely coupled systems for exchanging information between
independent partners, rather than tightly coupled solutions for
sharing information or other resources.

The article is structured as follows. In section II we first take
a look at virtual enterprises, federations of enterprise
information systems, and their peculiarities, as they form the
conceptual background of the proposal. Then, software
development methodology and its elements are reviewed with
respect to developing federated systems. This leads to section
III, containing our proposal of a software development approach
for federated systems based on subject orientation. We conclude
in section IV.

II. BACKGROUND

A. Recommendations for creating federated systems

When independent enterprises develop a federated system a
lot of managerial and technological aspects have to be
considered, particularly with respect to managing collaborative
business processes. This is reflected in the following
recommendations (cf. [3], [4]):

1. Start the foundation of a federation and identify members.

2. Identify and describe the business services that organizations

can provide or they need from partners in service level
agreements.

3. Harmonize the enactment of collaboration by
coordinating the participating organizations according
to defined business processes and identify the systems
required for the federation.

4. Integrate the identified and implemented
services/systems into the intended application.

5. Maximize the autonomy of organizations when
collaborating, thereby ensuring organizations to benefit
most from their own business objectives.

6. Represent the partnerships between collaborating
organizations when collaborating, and update changes in
partnership.

7. Guarantee the business privacy of organizations in the
course of collaboration.

8. Allow partners and other third parties to monitor,
measure, and oversee the execution of business
processes.

B. Federation of enterprise information systems

[1] define virtual enterprises and federations of enterprise
information systems as follows: “The Enterprise partners’

Virtual Enterprise (EP VE) is the federation of partners in the

community that come together to achieve the goal of a federated

distributed system environment, sharing their resources, and

collaborating to achieve a common goal: the Federated System

VE (FS VE). The partners in the federation retain autonomy

over their resources, deciding which resources (personnel,

resource dollars, equipment, etc.) are sharable for achieving

this goal. The results of this VE are then useable by the partners

in furthering their individual systems. The FS VE is seen to be

a virtual system of distributed processing components

(hardware and software), which are physically implemented

and managed by the partners. It is a federation of the partners’

systems, where each system retains its autonomy over all

processing system components and sharable data/information.

Retaining autonomy means defining which data or information

and software/hardware assets will participate in the federation

and be accessible and usable by other systems in the

federation.”
The definition shows that the focus is on sharable resources.

This means when setting up a federation the VE members need
to clarify ownership of the shared resources as well as access
rights and the rights to change those. Such an approach often
implies tight coupling of the involved enterprises and the related
resources. Entities leaving a federation then cause difficulties

with respect to separating involved systems (changing access
rights) and sorting out ownership of information.

Alternatively, information can be exchanged between the
partners by messages, implying only a loose coupling of the
involved systems. In this case the partners only need to agree
upon structure and meaning of the data, e.g., using XML
schemes, and upon the implementation of the message
exchange, e.g., by web services.

C. Software development methodology

“A software development methodology is a collection of
procedures, techniques, tools and documentation aids which
help developers to implement software systems” [5]. It may
include modeling concepts, tools for model-driven architecture,
integrated development environments (IDEs) etc. The so-called
magic triangle (see figure 2) summarizes the various aspects of
a software development methodology [6].

Figure 2: Magic triangle of software development methodologies

Concepts and Techniques are used to create models of the
software to be implemented, and are thus significantly
influencing which languages, procedures and tools are utilized.
The applied concept implies the artifacts to be produced, of
which the executable software system is the most important one.
The Language is used to create the artifacts and tools.
Procedures describe the sequence in which the activities for
creating the various artifacts are executed. While languages and
tools can be replaced without impacting concepts and
procedures, the latter are decisively determining the shape of a
software development environment.

D. Modeling concepts

Developing a federated system like the one described in
section I requires modeling cross-company business processes
and the entities performing activities in these processes.

1) Business process modeling
There are various approaches for specifying business process

models. IT implementations of those models are called process-
controlled applications [7] or workflows. The modeling
approaches can be distinguished in three classes: (i) Control
flow-based specifications put the focus on the activities. (ii)
Object-based models mainly describe business objects and the
sequence of operations to manipulate them. (iii)
Communication-based models focus on the active entities in a
process which exchange messages in order to coordinate their
work.

By their nature the latter are promising candidates for
modeling federations of systems. Business Process Model and
Notation (BPMN), the currently most widely discussed
modeling language, contains elements for the description of

control flows and communication in business processes. In the
following we discuss its communication-oriented features.

To model communication BPMN provides so-called pools,
each representing a process that can exchange messages with
processes in other pools. Conversation diagrams are the means
to describe this mechanism: However, they do not allow
specifying the sequence in which messages are exchanged.
Although the sequence can be captured by collaboration
diagrams, the semantics of sending and receiving messages is
not precisely defined. For instance, it remains unclear whether
messages are exchanged synchronously or asynchronously.
Additionally a certain message from a pool can only be received
in a single activity state, but not in other states. Choreography
diagrams in BPMN also define the allowed message sequence
between pools. [8] describe a choreography-based tool for
specifying global processes. The problem is that choreography
specifications cannot contain data. As a consequence a modeler
can only describe message sequences being covered by regular
expressions, which is the lowest level in the Chomsky hierarchy.
This fact makes it impossible to model a behavior like the
following: Pool S sends n messages of a type X to pool R. After
that S sends a message Y to R. Subsequently S expects m
messages of type A from pool R, which received the n messages
of type X. The reason for that is that the messages cannot be
counted, because data are not allowed in BPMN choreographies.

Given these properties of BPMN this notation has significant
draw backs for modeling communication, hindering the precise
development of federations of systems.

2) Multi-agent systems modeling
The term agent has multiple meanings. We follow the

definition given in [9]: An agent is an entity that performs a
specific activity in an environment of which it is aware and that
can respond to changes. A multi-agent system (MAS) is a
system where several, perhaps all, of the connected entities are
agents. The most important property of agents is their controlled
autonomy: They independently execute their role-specific
behavior, and in multi-agent systems they communicate with
each other. These properties are alike those of federated systems
which therefore can be considered as multi-agent systems. This
means that software development methodologies for agent-
oriented software (for an overview see [8]) can help developing
federations of applications.

E. Procedures

Software Life Cycles (SLC) build a framework for software
development procedures. All software development projects
follow a series of phases. While software life cycles can be
defined in many different ways, each of them comprises the
following generic activities:

• Project conception or initiation

• Planning

• Execution with specification and implementation
activities

• Termination

In the traditional waterfall approach these activities are
performed in the sequence shown above. Other life cycle

concepts propose overlapping the development steps, suggest
alternatives like the V model or agile development procedures
like Extreme Programming and Scrum. [10], [6] and [5] give an
overview of the various approaches.

F. Work break down structure (WBS)

The work break-down structure describes the work to be
done in a project in a hierarchical way. A work break-down
structure element may be a product, data, service, or activity
contained in the software life cycle or any combination thereof.
A WBS also provides the necessary framework for detailed cost
estimating and control along with guidance for schedule
development and control. The top level of the WBS should
identify the major phases and milestones of the project in a
summative fashion. Consequently, the phases used in the top
level depend on the software development methodology applied
in a project. The first level can either represent the phases used
in the software life cycle or the major artifacts of the system to
be developed. In case the top level is SLC-oriented it might be
built by requirement specification, software architecture,
programming, test etc. In the case of an evolutionary life cycle
there will be topics like Release 1, Release 2 etc., followed by
headlines like requirement specification on the second level.

Another alternative is to use top level headlines
corresponding to artifacts created by modeling activities, such as
‘create communication structure’ or ‘describe subject behavior’
(see section III.D).

The WBS is created during the planning phase of a project
life cycle. During this phase the project manager works with the
project team to make sure that the client's needs are addressed
and the project is planned completely and approved by the client
prior to any sort of production beginning on the project.

G. Organisational break down structure and software

architecture

An organizational breakdown structure (OBS) complements
the WBS and resource breakdown structure of a project. Project
organizations can be broken down in much the same way as the
work or product. The OBS is created to reflect the strategy for
managing the various aspects of the project and shows the
hierarchical breakdown of the management structure. Hence, the
work break down structure has a significant impact on the
organizational structure of the project team. The same holds for
the phases of the software life cycle and the system architecture
influencing the work break down structure. Conway’s law states
“organizations which design systems ... are constrained to
produce designs which are copies of the communication
structures of these organizations” [11]. A variation of Conway’s
law can be found in [12]. "If the parts of an organization (e.g.,
teams, departments, or subdivisions) do not closely reflect the
essential parts of the product, or if the relationship between
organizations do not reflect the relationships between product
parts, then the project will be in trouble... Therefore: Make sure
the organization is compatible with the product architecture”
[12].

As we look at developing federations of systems with a
federation of independent project teams, the system architecture
needs to be aligned with the multiple project team structure.

http://en.wikipedia.org/wiki/Product_(business)
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Service_(economics)
http://www.brighthubpm.com/project-planning/1673-moving-into-the-project-planning-stage/
http://www.brighthubpm.com/project-planning/1673-moving-into-the-project-planning-stage/
http://www.successful-project-management.com/resource-breakdown-structure.html

III. SOFTWARE DEVELOPMENT METHODOLOGY FOR

FEDERATED SYSTEMS

The software development methodology for federated
systems proposed here is based on Subject-oriented Business
Process Management (S-BPM) as the most straightforward
enabler of communication-oriented BPM [16]. Therefore we
first outline this approach the way being used in many industrial
projects successfully (for examples see [13], [14], [15]). We then
explain all activities and steps of the development cycle for
describing and implementing a federated system using the dog
food order-to-cash example. The sample case starts with having
the idea to create a solution and ends with a running application.

A. Subject-oriented business process models

1) Subjects, messages, and business objects
Subject-oriented business process management includes a

modeling language for describing processes as a system of
independent entities which organize their work by exchanging
messages. Each entity is autonomous in the sense that it decides
by itself when it sends messages, receives messages and
executes internal actions. These entities are called subjects and
can be interpreted as roles in a process to be implemented. Each
subject has its local data which can be changed by local actions
or by receiving messages. These data are called the business
objects of a subject. Each message has a name, similar to a name
of a method in object-oriented systems, and related business
objects, which are send or received with it. If a message is sent
it transmits the values of the business object. If a subject accepts
a message by picking it up from the input pool (see section
III.A.3), the values of the incoming business object are copied
into a corresponding local business object of the receiving
subject.

Physical things like a can of dog food can also be a business
object. In general physical business objects are accompanied by
data-oriented ones like a delivery slip. Consequently, a can of
dog food together with the data of a delivery slip may form a
combined business object. In the model data and physical
entities are considered in the same logical way. The physical
aspect of a business object is considered as implementation
aspect. Such an understanding allows creating a model on a
logical level independent from implementation details. These
are added later on.

The sequence in which messages are sent, received, or
internal actions are executed, is defined by the subject behavior
(for details see section II.A.4).

2) Subjects and agents
In order to execute subjects they will be assigned to agents

or actors. An agent in that context is a human or non-human
entity which is capable to execute actions. Details about the
relationship between subjects and agents/actors can be found in
[16]. This distinction allows to specify a federated system
independent from a special environment. The subjects represent
the members of a federation, and subjects can be assigned to
another agent once the business relationship changes. Subject-
oriented models are therefore independent from special
members of a federation. For details about the deployment of
subjects see [16] and [17] .

3) Communication structure and message exchange

A communication structure shows which subjects are
involved in a process and which messages they exchange. Figure
3 depicts the communication structure of the dog food order-to-
cash application in the so-called subject interaction diagram
(SID). It describes the system on a logical layer. What it does
not show, is sending the message “deliver dog food” that is
implemented by a truck transporting dog food cans together with
a delivery slip. As we will see later on the exchange of all other
messages are implemented using information and
communication technology, and thus considered as aspects only
relevant for implementation, but not for modeling (i.e.
designing).

Figure 3: Communication structure of dog food order-to-cash application

The specification of the communication structure includes
the business objects of each subject. It also defines which
business object values are transported by which messages. The
maximum number of messages which can be deposited in an
input pool determines its size, independent on the size of the
business objects coming with a message. In case the size limit is
reached sending will be blocked until the receiving subject
removes a message from its input pool. Alternatively, the
incoming message replaces the most recent or message received
initially in the pool, according to the chosen strategy. Details
about message transfer and the related synchronization
mechanisms are explained in [17].

A subject can receive certain messages by checking the input
pool on their availability and removing those it finds. On
removal the values of the transmitted business object are copied
into a local business object.

Figure 4 depicts the input pools of the subjects in our
example. Since each subject sends one message to other subjects
and then waits for an answer, all input pools have a maximum
size of one.

Figure 4: Message exchange via input pools

4) Subject behavior
Each subject executes send, receive and internal operations

in a certain sequence. The allowed sequence is defined in a
subject behavior diagram (SBD). Figure 5 shows the SBD of the
subject “dog food store”. In the start state “wait for…” the
subject waits for the message “order” from subject “customer”.
After that the message “get money” is sent to the subject “bank”.
If the message “money” comes from the subject “bank” the
message “order confirmation” is sent to the customer. Then, the
internal operation “prepare order” is executed.

This function includes activities like checking the
availability of the ordered goods, preparing the dog food, and all
accompanying documents for shipment and updating the
inventory. If the goods are not on stock the customer gets an
order confirmation indicating a delay. In case of availability the
message “Transfer order” is sent to the subject “shipment
company”. It contains data (delivery slip) and physical business
objects (cans with food). According to the behavior specification
the subject then waits until the delivery confirmation arrives
from the shipment company and subsequently terminates
processing the instance.

B. Development as a multiple-team structure

We now assume that the dog food order-to-cash scenario
does not yet exist. The store wants to extend its services for the
customers by offering online shopping and home delivery. In
order to reach this business objective it takes the initiative to
found a federation of enterprises which combine their services
and develop a corresponding federation of systems.

Each federated enterprise establishes a project team, working
on their parts of the solution independent from each other. This
leads to a multiple-team project on the federation level [18]. As
the teams belong to different, independent companies they all
have their own development culture and methodology.

Since there is no single line management who can assign an
overall project manager, the federation members need to agree
on a project leader and the competencies related to this role. As
the initiator of a federation has the most interest in the
development of the federated solution it might be helpful that
this company, in our case the store, recruits the leader.

Figure 5: Behavior of the dog food store (clipped)

His or her major task is to ensure smooth communication
between the independent teams, respectively their managers.
The project teams needs to coordinate how the systems they are
developing communicate with each other. Their major
communication paths are predefined by the communication
structure of the system federation. This strategy leads to a high
socio-technical-congruence. Figure 6 shows the team and
communication structure of the dog food order-to-cash
federation.

Figure 6: Multiple-team project and its communication structure

Beside that top-level communication implied by the problem
structure, each team can use services offered by other
enterprises. Figure 6 reveals that the shipment company uses the
service of carriers and forwarding agents, in order to implement
the transportation service offered to the dog food shop. This
communication relation is of no interest for other federation
members and thus should not be visible to the top level teams. It
belongs to the internal issues of the shipment project team.

C. Development process for federated systems

In section III.A. the method for defining the functional
requirements of a federated system was outlined. The artifacts to
be created according to the method need to be developed by the
federation of teams.

1) Specification of the communication structure
The communication between the various members of the

federation needs to be specified in more detail. This is done by
assigning a subject to each member of the federation and
defining the messages exchanged between the subjects.
Consequently, a first version of the communication structure as
described in section III.A.3 emerges. Together with the data
transported by the messages a communication model of the
system federation is defined. The advantage of the subject-
oriented approach is that the system communication structure is
directly in line with the communication structure of the
corresponding developing teams. The result of that step is the
subject interaction diagram (SID) as shown in Figure 3.

2) Specification of the subject behaviour
After defining the communication structure the behavior of

each subject is specified. The modelers describe the allowed
sequence of messages exchanged on top level and the internal
functions of the individual systems. These internal functions
represent the services executed by the corresponding federation
partner either directly or supported by other service providers.
They also encapsulate the communication with those sub-
contractors as it is of no interest on the top level of the federation.

The behavior of a subject is mainly defined by the
corresponding project team, however, in close coordination with

the teams responsible for the partner subjects. The teams only
need to make sure a message sent to a partner has a receive state
in the corresponding subject behavior and vice versa. This
pairwise coupling means, e.g., that the behavior description of
the shipment company has to contain a state for receiving the
“Transfer order” message, transmitted by the related send state
in the behavior diagram of the dog food store subject (see figure
5). In order to correctly model these interactions the responsible
project teams need also to agree on the interaction sequence of
the subjects. However, their internal task behavior (i.e. sequence
of functions for task accomplishment) might not become visible
to others, as is specified decentralized and might not be shared
at all.

3) Implementation of the input pool
The input pool is the abstract concept for defining the

semantics of message exchange. Partners exchanging messages
need to agree on how they implement the input pool semantics.
Sending requires the sending subject to execute a function to
deposit a message in the input pool of the receiver. For each
subject doing so an implementation agreement is necessary.
Since an input pool is owned by exactly one subject, the
functionality for accessing it is local and does not need to be
coordinated with the partners. In most cases input pools are
implemented as web services.

4) Implementation of subject behaviour
Each team has to implement the behavior of its subject. This

means they have to ensure that depositing and removing
messages (including business objects) in or from the input pool
are executed and internal functions are invoked in the specified
sequence. Workflow engines are appropriate tools for
implementing that functionality.

5) Implementation of internal functions
The internal functions realize the kernel of the service

contributed by a partner to a federated application. Messages are
the means to cause the invocation of an internal function, and
they transport its result to a partner subject. Internal functions
can be based on existing systems, e.g., an SAP client. They also
can be implemented using another federated solution, or being
developed from scratch. The way an internal function is realized
is a local decision taken by the corresponding project team.

6) Operation of a federated system
Beside the development and deployment the non-functional

aspects of a federated system need to be agreed upon by the
contributing partners. For this purpose they negotiate service
level agreements (SLA) defining response time, down time,
reaction time in error cases etc. The SLA also includes business
aspects like costs and regulations for exceptional situations like
a member leaving the federation and bringing in another one.

D. Federated work break down structure

The various activities described so far can be organized in a
federated work break-down structure as shown in figure 7.

Figure 7: Work break down structure for the development of a federated

system

The tasks can be divided into three types:

Joint work concerns the top level of the federation and
therefore is done collaboratively by all members of a federation.
The major issue on this level is to agree on communication
structure and behavior of the entire system, while the behavior
of each subject can be described individually by the
corresponding member of the federation.

Some work can be done bilateral. Communicating partners,
e.g., agree on the coding of the business objects and the
implementation of the input pool. They also define the service
level agreements.

Local work comprises activities of the development teams
which do need to be coordinated with teams of other federation
members. A major example in this context is the set of internal
functions of each subject, being a local matter, and developed
following the particular culture and methodology of the
respective team.

E. Continuous alignment by communication

Although development can be split in joint, bilateral and
local tasks accomplishment continuous communication is
essential for the sustainable success of the resulting federated
system.

The overall project leader and the team managers need to
swiftly exchange all relevant information in order to maintain
the solution according to the changing requirements of the
partners.

F. Validation

The described development methodology has been partially
applied in several cross-organizational industry projects. The
organizations belonged to the same enterprise, which allowed a
central project management. Due to restrictive permission
regulation of the industry partners the publication of experiences
is not possible so far. Hence, we have set up a field study to
deepen our practical experiences with the presented approach.

The case deals with establishing novel services for co-
housing activities, namely to support groups of people to design
and implement a common housing project (see also

www.tsibutsang.at, www.artsliving.at). For each housing
project a project leader needs to be established, stemming either
from the co-housing support provider or another project partner,
e.g., a construction company. He/She ensures communication
and coordination of parallel and distributed activities. For each
project, various company procedures have to be aligned and a
federated system has to be established.

1) Specification of the communication structure
In a workshop, the communication between the various

members of the federation is specified. This step is supported by
holomapping (www.vernaallee.com), as it allows identifying
functional roles in a straightforward way. Once having
determined them as set of holomap nodes, a subject can be
assigned to each member of the federation – in the case of co-
housing the cohousing service provider, the co-housing group
(customer), architect (for planning), and an engineering
company (for building). Moreover, the tangible relationships of
holomaps represent deliverables and as such, messages
exchanged between the subjects. These relationships also
indicate the data transported by the messages, thus facilitating
the specification of business objects, such as contracts that need
to be set between the various co-housing parties.

2) Specification of the subject behaviour
Each contributing co-housing project partner (subject) has a

certain behavior that needs to be detailed not only in terms of
exchanging messages (i.e. the communication structure) but in
terms of concrete activities (internal functions). For instance, the
co-housing provider needs to arrange rooms for meetings,
schedule social activities and prepare for documenting results of
negotiations. These activities are mainly executed by functions
provided by the cohousing providers’ platform
http://tsibutsang.mixxt.org/. In this case, mixxt is that federation
partner’s service provider. The project leader needs to ensure the
completion of behavior specifications, in particular when
adaptations of standard procedures, such as contracting for
taking over land before authority clearance, are required,. Upon
completion, the co-housing project is operationalized in terms of
complete send-receive interactions between all project parties.

3) Implementation of the input pool
In that step project-specific semantics of message exchange

is defined. For instance, , a message in the input pool of the co-
housing support provider is based on the implementation
agreement that each partner (engineering company, co-housing
group) can send request messages any time with a fixed max.
response time of 2 workdays. Such an agreement is due to the
eventuality of social conflicts that should be addressed
promptly.

4) Implementation of subject behaviour
Since in our field study workflow management systems are

not being used, each involved organization needs to ensure the
negotiated communication pattern with its partners. The co-
housing support provider is using its mixxt-platform to trigger
the (internal) project coordinator of the respective project.
Hence, for each project, a dedicated workspace is established
including a corresponding input pool thus enabling a dedicated
communication pattern and set of business objects for each
project.

http://www.tsibutsang.at/
http://www.artsliving.at/
http://www.vernaallee.com/
http://tsibutsang.mixxt.org/

5) Implementation of internal functions
Typical internal functions in the field study are requests

triggering further communication or processing data by the
addressed subject (project partner). For instance, a meeting of a
co-housing group needs to be established, once all biddings for
a certain completion step have arrived from the engineering
company. Meetings are arranged invoking www.doodle.com
from the meeting space of the mixxt-platform.

6) Operation of a federated system
Typical non-functional aspects of a federated system in co-

housing concern the agreement to set up a task force in case of
unforeseen events, selecting relevant partners to resolve all
issues related to these events. Other agreements concern costs
and results from regulation checks influencing original co-
housing plans. Finally, changing the federation’s structure in
terms of membership and responsibilities is also regulated by
dedicated agreements.

IV. CONCLUSION AND FURTHER WORK

We have presented an approach for developing federated
systems. The concept considers the characteristics of virtual
enterprises combining the services of the partners to satisfy
customer needs while keeping legal, organizational,
technological and cultural independence.

Our communication-oriented view follows the idea that the
decentralized structure of federated systems needs to be
reflected in the organizational structure of multiple project teams
for developing such systems. Those teams belong to separate
enterprises and are mutually independent with respect to
methodology, technology etc. they use to develop their
individual part of the federated system.

The proposed approach establishes a layer above the
enterprise-specific environments. It helps building coherence on
the top level of the federated system solution, while the teams,
system elements etc. on the individual level of each federation
member keep the highest degree of independence.

REFERENCES

[1] J. Putman and S. Strong, "A Federated Virtual

Enterprise (VE) of Partners, Creating a Federated VE of

Systems," IEEE Proceedings of Compsac, 1998.

[2] V. Gruhn, „Process-centered software engineering

environments, a brief history and future challenges,“

Anals of Software Engineering, pp. 363-382, 14(1-4)

2002.

[3] H. F. P. Smith, Business process management—The

third Wave, Meghan-Kiffer Press, 2003.

[4] L. Chengfei, L. Qing and Z. Xiahui, "Challenges and

opportunities in collaborative business process

management: Overview of recent advances and

introduction to the special issue," Information Systems

Frontiers, pp. 201-209, 11 2009.

[5] D. E. Avison and G. Fitzgerald, Information Systems

Development: Methodologies, Techniques and Tools,

New York, NY.: 3rd ed. McGraw-Hill, 2003.

[6] J. Ludewig und H. Lichter, Software Engineering, 3.

Edition, Heidelberg: d-punkt Verlag, 2013.

[7] V. Stiehl, Prozessgesteuerte Anwendungen entwickeln

und ausführen mit BPMN, Heidelberg: d-punkt Verlag,

2013.

[8] R. Cognini and et. al., "HawkEye: A tool for

collaborative Business Process modelling and

verification," in SAC’13, Coimbra, Portugal, 2013.

[9] L. S. Sterling and K. Taveter, The Art of Agent-

Oriented Modeling, Cambridge, Massachusetts: The

MIT Press, 2009.

[10] R. Ramsin and R. F. Paige, "Process-centered Review of

Object Oriented Software Development

Methodologies," ACM Computing Surveys, Vols.

Volume-40, Number 1, 2008.

[11] M. E. Conway, "How do Committees Invent?," vol. 14,

1968.

[12] J. O. Coplien and N. B. Harrison, Organizational

Patterns of Agile Software Development, Prentice Hall

International, 2004.

[13] T. Walke and et. al., "Case Study @ Swisscom

(Schweiz) AG: iPhone 5 Self-Service Order App and

Process-Workflows," in H. Fischer, J. Schneeberger

(Ed.), S-BPM ONE - 2013, CCIS Vol. 360, Heidelberg,

Springer Verlag, 2013.

[14] G. Konjack, „Case Study: AST Order Control

Processing,“ in H. Buchwald et.al. (Eds.), S-BPM ONE -

Setting the stage for Subject Oriented Process

Management, CICS Vol. 85, Heidelberg, SPringer

Verlag, 2010.

[15] S. Nakamura and e. al., "CGAA/EES at NEC

Corporation, Powered by S-BPM: The Subject-Oriented

BPM Development Technique Using Top-Down

Approach," in W. Schmidt (Ed.), S-BPM ONE -

Learning by Doing - Doing by Learning, CCIS Vol.

213,, Heidelberg, Springer Verlag, 2011.

[16] A. Fleischmann, U. Kannengiesser, W. Schmidt and C.

Stary, "Subject-Oriented Modeling and Execution of

Multi-Agent Business Processes," Atlanta, 2013.

[17] A. Fleischmann, W.Schmidt, C. Stary, S. Obermeier and

E.Börger, Subject Oiented Business Process

Management, Berlin, Heidelberg: Springer, 2012.

[18] R. K. Wysocki, Effective Project Management, Seventh

Edition, Indianapolis: John Wileys & Sons, 2014.

[19] E. Yu und et. al., Social Modeling for Requirements

Engineering, Cambridge, Massachusetts: The MIT

Press, 2011.

http://www.doodle.com/

